

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Loy Instrument, Inc. 8455 East 30th Street Indianapolis, IN 46219

Fulfills the requirements of

ISO/IEC 17025:2017

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 17 March 2027 Certificate Number: L2079-1

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

Loy Instrument, Inc. 8455 East 30th Street Indianapolis, IN 46219 Stacey Atha 317-890-0474

CALIBRATION

Valid to: March 17, 2027 Certificate Number: L2079-1

Electrical – DC/Low Frequency

Version 008 Issued: March 04,2025

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Current	(4 to 20) mA	18 μΑ	Comparison to Digital Multimeter
DC Voltage	(0 to 100) mV (0 to 10) V	5.5 μV 6.2 mV	
Electrical Simulation Thermocouple indicating devices	Type K (0 to 2 500) °F Type J (0 to 2 190) °F Type R (32 to 3 000) °F Type S (32 to 3 200) °F Type T (-320 to 750) °F Type N (0 to 2 370) °F Type B (500 to 3 000) °F Type C (600 to 4 200) °F Type E (-300 to 1 830) °F	0.64 °F 0.66 °F 0.7 °F 0.68 °F 0.68 °F 0.7 °F 0.68 °F 0.68 °F	Comparison to Precision Process Calibrator
Electrical Simulation RTD indicating devices	PT100-385 (-200 to 850) °F	0.71 °F	Comparison to Precision Process Calibrator

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Temperature Measure	32 °F	1.6 °F	Comparison to Ice Bath and Type T Thermocouple AMS 2750 (current version)
Temperature System Accuracy Tests ¹	Types K, N (32 to 2 000) °F (2 000 to 2 400) °F	2.5 °F 4.2 °F	Comparison to Reference Thermocouple with Readout unit AMS 2750 (current version)
Temperature Uniformity Surveys ¹	Types K, N (0 to 2 000) °F (2 000 to 2 400) °F	2.5 °F 4.2 °F	Comparison to Reference Thermocouple with Digital Recorder AMS 2750 (current version)

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. This scope is formatted as part of a single document including Certificate of Accreditation No. L2079-1.

Jason Stine, Vice President

Version 008 Issued: March 04,2025

